HyNet North West

ENVIRONMENTAL STATEMENT (VOLUME III)

Appendix 15.3 Noise and Vibration Assessment Results (Clean)

HyNet Carbon Dioxide Pipeline DCO

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 – Regulations 5(2)(a)

Document Reference Number D.6.3.15.3

Applicant: Liverpool Bay CCS Limited

Inspectorate Reference: EN070007

English Version

REVISION: B DATE: March 2023 DOCUMENT OWNER: WSP UK Limited PUBLIC

QUALITY CONTROL

Document	Reference	D.6.3.15.3						
Document	Owner	WSP						
Revision	Date	Comments	Author	Approver				
A	September 2022	Submitted with DCO application	LW	EO				
В	March 2023	Updated for ES Addendum design change request 1	LW	EO				

TABLE OF CONTENTS

1.	NOIS	E	1
	1.1.	Construction	1
	1.2.	Vibration1	1

TABLES

Table 1 - Magnitude of Construction Noise Impact – Indicative Route	2
Table 2 - Magnitude of Construction Noise Impact – Route near North West Boundary	2
Table 3 - Magnitude of Construction Noise Impact – Route near South East Boundary	3
Table 4 - Predicted Noise Levels – Indicative Newbuild Carbon Dioxide Pipeline Route	3
Table 5 - Predicted Noise Levels – Route near North West Boundary	4
Table 6 - Predicted Noise Levels – Route near South East Boundary	4
Table 8 - 2025 Road Traffic Basic Noise Levels Comparison	6
Table 9 - Predicted Mitigated Construction Noise Levels at Biodiversity Receptors	10
Table 10 - Number of Receptors during Decommissioning	11
Table 11 - Peak Particle Velocity During Vibratory Piling	11
Table 12 - Peak Particle Velocity During Ground Compaction	12

1. NOISE

1.1. CONSTRUCTION

CONSTRUCTION NOISE MODEL RESULTS

This section presents the results of the noise predictions for the Construction Stage of the DCO Proposed Development.

This Revision B of Appendix 15.3: Noise and Vibration Assessment Results replaces and supersedes Revision A (APP-146). Appendix 15.3 (Revision B) provides updated baseline information in response to the proposed design changes as outlined in Table i.i of Chapter I of the ES Addendum 2023 Change Request 1.

As discussed in **Chapter 15 – Noise and Vibration (Volume II**), a noise model was produced using CadnaA software. The following activities have been included in the model:

- Open cut trenches: daytime only;
- Trenchless crossings: daytime, evening and night-time;
- Compounds: daytime only;
- AGIs and BVSs: daytime only; and
- Access locations for heavy vehicles: daytime only.

Open cut trenches have been modelled in three potential locations in order to predict the potential variation in noise impact. The following scenarios were modelled:

- Indicative Newbuild Carbon Dioxide Pipeline route, as presented in Figure
 3.2 DCO Proposed Development (Volume IV);
- Indicative Newbuild Carbon Dioxide Pipeline route near the north west part of the Newbuild Infrastructure Boundary, therefore closer to noise sensitive receptors located north west of the boundary; and
- Indicative Newbuild Carbon Dioxide Pipeline route near the south east part of the Newbuild Infrastructure Boundary, therefore closer to noise sensitive receptors located south east of the boundary.

Table 1, Table 2, and Table 3 present the number of noise sensitive receptorssubject to a negligible to high magnitude of impact in accordance with thecriteria presented in Table 15.14 in Chapter 15 – Noise and Vibration(Volume II). The tables show the number of receptors for both unmitigated andmitigated scenarios.

Table 1 - Magnitude of Construction Noise Impact – Indicative Route

	Number of Re	ceptors – Unmitig	gated	Number of Receptors – Mitigated		
Magnitude of Impact	Day	Evening	Night	Day	Evening	Night
Negligible	1087	2431	1851	2858	3403	3057
Low	1991	685	533	956	271	379
Medium	502	366	638	37	131	202
High	276	374	834	5	51	218

Table 2 - Magnitude of Construction Noise Impact – Route near North West Boundary

	Number of Ree	Number of Receptors – Unmitigated			Number of Receptors – Mitigated			
Magnitude of Impact	Day	Evening	Night	Day	Evening	Night		
Negligible	1016	2315	1779	2826	3329	2968		
Low	2034	710	499	949	299	372		
Medium	513	410	657	59	168	228		
High	293	421	921	22	60	288		

	Number of Rece	ptors – Unmitigated	k	Number of Receptors – Mitigated			
Magnitude of Impact	Day	Evening	Night	Day	Evening	Night	
Negligible	1064	2332	1819	2861	3429	3028	
Low	2004	688	491	919	243	416	
Medium	487	465	646	55	130	191	
High	301	371	900	21	54	221	

Table 3 - Magnitude of Construction Noise Impact – Route near South East Boundary

 Table 4, Table 5 and Table 6 present a range of predicted noise levels associated with the three open trench routes modelled for both unmitigated and mitigated scenarios. The values shown in the tables correspond to façade noise levels at a height of 4m for receptors within the Study Area. Values for evening and night-time relate to associated variations in the locations for trenchless crossings.

Table 4 - Predicted Noise Levels – Indicative Newbuild Carbon Dioxide Pipeline Route

	Unmitigated Cen	tral L _{Aeq} dB		Mitigated Central LAeq dB			
Magnitude of Impact	Day	Evening	Night	Day	Evening	Night	
Negligible	15 – 65	9 – 59	9 – 57	15 – 63	9 – 59	9 – 57	
Low	48 – 70	43 – 65	40 – 54	48 – 70	42 – 64	40 – 55	
Medium	65 – 75	55 – 69	46 - 60	65 – 69	55 – 68	45 – 59	
High	70 - 82	60 - 82	50 - 82	70 - 72	42 – 64	50 – 72	

	Unmitigated Sou	th-East Boundary I	_{-Aeq} dB	Mitigated South-East Boundary LAeq dB			
Magnitude of Impact	Day	Evening	Night	Day	Evening	Night	
Negligible	15 – 65	9 – 59	9 – 57	15 – 65	9 – 59	9 – 57	
Low	52 – 70	43 – 65	41 – 54	47 – 70	42 – 65	40 – 53	
Medium	65 – 75	55 – 70	46 – 60	65 – 74	55 – 68	45 – 60	
High	70 - 88	60 - 83	50 - 83	70 - 78	60 - 74	50 – 74	

Table 5 - Predicted Noise Levels – Route near North West Boundary

Table 6 - Predicted Noise Levels – Route near South East Boundary

	Unmitigated Nor	th-West Boundary	L _{Aeq} dB	Mitigated North-West Boundary LAeq dB			
Magnitude of Impact	Day	Evening	Night	Day	Evening	Night	
Negligible	15 – 65	9 – 59	9 – 57	15 – 63	9 – 59	9 – 57	
Low	48 – 70	43 – 65	42 – 45	47 – 69	42 – 59	40 – 55	
Medium	65 – 75	55 – 69	45 – 60	65 – 70	55 – 60	45 – 60	
High	70 - 92	60 - 86	50 - 86	70 - 82	60 - 74	50 – 74	

Important Areas and Noise Action Planning Priority Areas

Table 7 shows a Noise Important Areas (IA) where there are noise sensitive receptors likely to experience either a medium or a high magnitude of noise impact during the construction period. However, no significant adverse effects were identified within IAs or Noise Action Planning Priority Areas (NAPPAs).

Alignment		NIA ID
Variant	Period	10784
Central	Day	0
Indicative Alignment	Evening	0
,	Night	X
North-West	Day	0
Boundary Alignment	Evening	0
,	Night	X
South-East	Day	0
Boundary Alignment	Evening	0
,	Night	X

Table 7 - Adverse Effects within IAs

Construction Road Traffic Noise

An assessment of the potential noise impact due to road traffic noise impact during the Construction Stage was undertaken. **Table 8** presents the changes in noise levels predicted for the following scenarios:

• Year 2025 with DCO Proposed Development (2025 Do-Something) versus Year 2025 without DCO Proposed Development (2025 Do-Minimum).

The noise levels presented in the tables correspond to $L_{A10,18hr}$ dB in accordance with guidance in the Calculation of Road Traffic Noise (CRTN). For road links where the road traffic flows are low and outside the scope of CRTN, then noise levels $L_{Aeq,18hr}$ have been compared using guidance in the Advisory Council (1978): A guide to measurement and prediction of sound level L_{eq} .

Road links IDs referred in the tables are described in **Appendix 17-4 Baseline Traffic Data (Volume III).**

Link ID	2025 Do-Minimum										
	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	Change in Noise Level (dB)
1	654	7.5 %	8,682	71	-	684	7.7 %	8,831	71	-	0
2	612	2.4 %	25,085	76	-	656	2.6 %	25,304	76	-	0
3	22	1.5 %	1,475	66	-	42	2.7 %	1,577	66	-	0
4	12	0.8 %	1,449	64	-	25	1.6 %	1,512	64	-	0
5	8	2.6 %	304	60	49	21	5.6 %	367	60	50	1
6	9	0.6 %	1,497	63	-	40	2.4 %	1,654	63	-	0
7	256	1.5 %	16,610	73	-	289	1.7 %	16,775	73	-	0
8	24	0.7 %	3,340	67	-	57	1.6 %	3,504	67	-	0
9	23	0.4 %	6,076	69	-	33	0.5 %	6,123	69	-	0

Table 8 - 2025 Road Traffic Basic Noise Levels Comparison

Link ID		2025 Do-Minimum					2025 Do-Something				
	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	Change in Noise Level (dB)
10	8	0.5 %	1,640	62	-	18	1.0 %	1,687	62	-	0
11	86	1.1 %	7,633	69	-	95	1.2 %	7,680	69	-	0
12	130	1.2 %	11,254	69	-	149	1.3 %	11,348	69	-	0
13	226	3.9 %	5,792	66	-	235	4.0 %	5,839	66	-	0
14	348	9.5 %	3,664	65	-	358	9.6 %	3,711	65	-	0
15	514	12.4 %	4,144	67	-	542	12.7 %	4,285	67	-	0
16	6	1.8 %	311	60	49	15	4.2 %	358	60	49	0
17	1	0.8 %	141	63	47	11	5.6 %	188	62	48	1
18	6	1.9 %	340	61	50	38	7.6 %	497	60	52	2

Link ID	2025 Do-Minimum					2025 Do-Something					
	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	Change in Noise Level (dB)
19	228	1.5 %	15,679	74	-	247	1.6 %	15,773	74	-	0
21	4	0.2 %	1,753	61	-	23	1.2 %	1,847	61	-	0
22	7	0.5 %	1,462	61	-	26	1.6 %	1,556	61	-	0
24	273	5.5 %	4,991	66	-	292	5.7 %	5,085	66	-	0
25	12	0.6 %	1,928	62	-	30	1.5 %	2,022	62	-	0
26	3	4.0 %	80	64	43	22	12.6 %	174	61	46	3
27	360	7.8 %	4,630	63	-	378	8.0 %	4,724	63	-	0
28	129	9.0 %	1,423	64	-	147	9.7 %	1,517	64	-	0
29	30	2.0 %	1,525	64	-	49	3.0 %	1,619	65	-	1

Link ID		2025 Do-Minimum					2025 Do-Something				
	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	HGV	HGV (%)	Total	18 Hour Basic Noise Level (L _{A10} dB) at 10m	18 Hour Noise Level (L _{Aeq} dB) at 10m	Change in Noise Level (dB)
30	95	2.1 %	4,612	69	-	114	2.4 %	4,706	69.	-	0
31	318	2.2 %	14,696	73	-	351	2.4 %	14,861	73	-	0
32	9	0.1 %	8,159	67	-	42	0.5 %	8,324	67	-	0
33	5	1.8 %	284	62.	50	36	8.3 %	441	61	52	2
34	7	0.3 %	2,518	62	-	17	0.7 %	2,565	62	-	0
35	4,853	7.1 %	68,223	80	-	4,872	7.1 %	68,317	80	-	0
36	10	2.3 %	406	62	52	28	5.7 %	500	61	53	1
37	1	2.9 %	35	70	42	20	15.4 %	129	64	48	6
38	37	0.5 %	8,187	66	-	56	0.7 %	8,281	66	-	0

Biodiversity Receptors

Table 9 presents the mitigated construction noise levels predicted at locationsrepresentative of biodiversity receptors. A description of the associatedreceptors and the assessment are presented in Chapter 9 - Biodiversity(Volume II).

		Noise Level L _{Aeq} dB							
Biodiversity	Inc	licative R	oute	-	ute near N est Bound		Route near South East Boundary		
Receptor	Day	Evening	Night	Day	Evening	Night	Day	Evening	Night
B113	64	17	17	61	22	22	79	34	34
T49	63	44	44	61	46	46	68	40	40
T102	32	32	32	32	32	32	32	32	32
T190	64	57	57	65	54	54	60	52	52
T200	57	48	48	62	59	59	63	62	62
T220	65	58	58	68	62	62	64	50	50
T325 – T327	65	52	52	61	51	51	73	52	52
T365	63	< 10	< 10	76	< 10	< 10	60	< 10	< 10
T371	60	58	58	58	56	56	74	64	64
T111	65	52	53	61	52	5	82	53	53
T166	64	56	56	63	56	56	63	55	55
T321	63	49	49	74	49	49	59	48	48
L5455	71	13	13	71	13	13	71	13	13
L5455	66	15	15	66	15	15	66	15	15
L6455	61	54	54	68	55	55	59	52	52

Table 9 - Predicted Mitigated Construction Noise Levels at BiodiversityReceptors

DECOMMISSIONING

AGI and BVS

Table 10 presents the number of receptors that would receive either a medium or high magnitude of impact from noise levels during decommissioning of AGIs and BVSs. The receptor experiencing a medium magnitude of impact after mitigation is near the BVS proposed on Cornist Lane, south of Bryn Awel.

Table 10 - Number of Receptors during Decommissioning

Unmit	igated	Mitigated		
Medium	High	Medium	High	
133	39	1	0	

1.2. VIBRATION

CONSTRUCTION

Piling and Ground Compaction

Table 11 and **Table 12** present the peak particle velocities predicted for thevibratory piling and ground compaction activities during the Construction Stage.The values correspond to steady state operation.

The predictions presented in the table are presented for a range of distances including the SOAEL and LOAEL defined for human perception in **Chapter 15 – Noise and Vibration (Volume II).**

No significant sources of vibration are expected during decommissioning.

	Peak Particle Velocity (mm/s)						
Distance (m)	95 % Confidence Level	67 % Confidence Level	50 % Confidence Level				
5	27.9	13.2	6.3				
10	10.6	5.0	2.4				
15	6.0	2.8	1.4				
20	4.0	1.9	0.9				
25	2.9	1.4	0.7				
30	2.3	1.1	0.5				
35	1.8	0.9	0.4				

 Table 11 - Peak Particle Velocity During Vibratory Piling

	Peak	Particle Velocity (n	nm/s)
Distance (m)	95 % Confidence Level	67 % Confidence Level	50 % Confidence Level
40	1.5	0.7	0.3
45	1.3	0.6	-
50	1.1	0.5	-
55	1.0	0.5	-
60	0.9	0.4	-
65	0.8	0.4	-
70	0.7	0.3	-
75	0.6	-	-
80	0.6	-	-
85	0.5	-	-
90	0.5	-	-
95	0.5	-	-
100	0.4	-	-
105	0.4	-	-
110	0.4	-	-
115	0.3	-	-

Table 12 -	Peak Particle	Velocity During	Ground Compaction
------------	---------------	-----------------	-------------------

	Peak Particle Velocity (mm/s)						
Distance (m)	95 % Confidence Level	67 % Confidence Level	50 % Confidence Level				
5	19.6	10.2	5.3				
10	8.5	4.4	2.3				
15	5.0	2.6	1.4				
20	3.4	1.7	0.9				
25	2.5	1.3	0.7				
30	1.9	1.0	0.5				
35	1.5	0.8	0.4				
40	1.3	0.7	0.3				
45	1.1	0.6	-				

	Peak Particle Velocity (mm/s)					
Distance (m)	95 % Confidence Level	67 % Confidence Level	50 % Confidence Level			
50	0.9	0.5	-			
55	0.8	0.4	-			
60	0.7	0.4	-			
65	0.6	0.3	-			
70	0.6	-	-			
75	0.5	-	-			
80	0.5	-	-			
85	0.4	-	-			
90	0.4	-	-			
95	0.4	-	-			
100	0.3	-	-			